
Exploring the Assimilation of GLM-Derived Water Vapor Mass in a Cycled 3DVAR
Framework for the Short-Term Forecasts of High-Impact Convective Events

JUNJUN HU, ALEXANDRE O. FIERRO, AND YUNHENG WANG

Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and

NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

JIDONG GAO

NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

EDWARD R. MANSELL

NOAA/National Severe Storms Laboratory, Norman, Oklahoma

(Manuscript received 14 June 2019, in final form 9 December 2019)

ABSTRACT

The recent successful deployment of the Geostationary Lightning Mapper (GLM) on board the

Geostationary Operational Environmental Satellite R series (GOES-16/17) provides nearly uniform spa-

tiotemporal measurements of total lightning (intracloud plus cloud to ground) over the Americas and adja-

cent vast oceanic regions. This study evaluates the potential value of assimilating GLM-derived water vapor

mixing ratio on short-term (#6 h), cloud-scale (dx5 1.5 km) forecasts of five severe weather events over the

Great Plains of the United States using a three-dimensional variational (3DVAR) data assimilation (DA)

system. Toward a more systematic assimilation of real GLM data, this study conducted sensitivity tests aimed

at evaluating the impact of the horizontal decorrelation length scale, DA cycling frequency, and the time

window size for accumulating GLM lightning observations prior to the DA. Forecast statistics aggregated

over all five cases suggested that an optimal forecast performance is obtained when lightning measurements

are accumulated over a 10-min interval and GLM-derived water vapor mixing ratio values are assimilated

every 15min with a horizontal decorrelation length scale of 3 km. This suggested configuration for the GLM

DA together with companion experiments (i) not assimilating any data, (ii) assimilating radar data only, and

(iii) assimilating both GLM and radar data were evaluated for the same five cases. Overall, GLM data have

shown potential to help improve the short-term (,3 h) forecast skill of composite reflectivity fields and in-

dividual storm tracks. While this result also held for accumulated rainfall, longer-term ($3 h) forecasts were

generally characterized by noteworthy wet biases.

1. Introduction

Timely and accurate short-term convection-allowing

(,3 km) numerical weather prediction (NWP) is criti-

cal for making informed decisions to warn the public

and stakeholders of high-impact, and occasionally life-

threatening, weather events. Increasing the lead times of

such warnings is challenging given the complex, non-

linear physical processes governing the evolution of at-

mospheric weather phenomena across a large range of

scales. Pioneering work by Lilly (1990) outlined the

principal scientific challenges of the development of

convective-scale NWPs and underlined that increasing

computer power combined with advances in NWP pa-

rameterizations and data assimilation (DA) methods

are expected to play critical roles in improving fore-

casts in the shorter and longer term (Stensrud et al.

2009, 2013).

In addition to NWP-related strides, the increasing

availability of detailed datasets spanning a large range of

scales played a significant role toward recent improve-

ments of convective-scale severe weather forecasting.

Various observational datasets at the meso and con-

vective scales from in situ to remote sensing instruments

have been used in convective-scale DA applications.

These include, for instance, traditional observationsCorresponding author: Junjun Hu, junjun.hu@noaa.gov
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(e.g., pressure, moisture, temperature, and wind) from

surface instruments like mesonets and automated

surface observing systems (e.g., Fujita et al. 2007;

Knopfmeier and Stensrud 2013; Sobash and Stensrud

2015) and upper-air observation platforms such as

rawinsonde, wind profiler, aircraft communications

addressing and reporting systems (ACARS; e.g.,

Hitchcock et al. 2016; Coniglio et al. 2016), radial

velocity and reflectivity from Weather Surveillance

Radar-1988 Doppler (WSR-88D) (e.g., Snyder and

Zhang 2003; Gao and Stensrud 2012; Yussouf et al.

2015; Johnson et al. 2015; Wang and Wang 2017), sat-

ellite measurements (e.g., Jones et al. 2016, 2018;

Zhang et al. 2018), and combinations of these obser-

vations (e.g., Benjamin et al. 2016; Hu et al. 2017).

Among these, Doppler radar data (i.e., radial velocity

and reflectivity factor) were proven to be critical to-

ward convective-scale forecast improvements. It is well

established, however, that ground-based radar net-

works suffer from poor coverage in mountainous ter-

rains due to beam blockage (Zhang et al. 2011; Maddox

et al. 2002) and oceanic regions lying beyond the net-

work’s range. Ancillary detection of deep convection is

critical for these regions, given that mountainous areas

are susceptible to forest fires while some oceanic re-

gions are prone to hurricane and tropical systems.

Technical advances in spaceborne instruments such as

the Geostationary Operational Environmental Satellite

R series (GOES-16/17; Goodman et al. 2013) provide an

unprecedented opportunity for researchers and op-

erational forecasters to monitor the atmosphere over

vast regions devoid of conventional data at nearly

uniform spatiotemporal resolution (e.g., Jones et al.

2018; Minamide and Zhang 2018; Zhang et al. 2018).

TheGeostationary LightningMapper (GLM) on board

each of theGOES-16/17 satellites provides continuous

detection of total lightning over most of the Western

Hemisphere with high temporal (20 s) and spatial

(8–12 km) resolution (Goodman et al. 2013). Many

studies have shown that lightning activity, in general,

is an unambiguous indicator of electrified mixed phase

convection (Petersen and Rutledge 1998; Rudlosky

and Fuelberg 2013; Makowski et al. 2013), especially

total lightning (cloud to ground plus intracloud) (e.g.,

MacGorman et al. 1989; Carey and Rutledge 1998;

Wiens et al. 2005; Kuhlman et al. 2006; Fierro et al.

2006; Deierling and Petersen 2008; MacGorman et al.

2011; Weiss et al. 2012; Medici et al. 2017).

Previous studies focusing on lightning DA have gen-

erally demonstrated positive impacts on NWP forecast

primarily through functional relationships based on

proxies exhibiting a well-established linkage with light-

ning, such as latent heating (Alexander et al. 1999;

Chang et al. 2001; Pessi and Businger 2009), specific

humidity (Papadopoulos et al. 2005, 2009), the trig-

ger function in convection parameterization schemes

(Mansell et al. 2007; Lagouvardos et al. 2013; Giannaros

et al. 2016; Heath et al. 2016), the water vapor mass

mixing ratio (Fierro et al. 2012, 2016, 2019; Zhang et al.

2017), or radar reflectivity (Wang et al. 2014). In addi-

tion to simpler and computationally efficient nudging

DAmethods (Fierro et al. 2012;Marchand and Fuelberg

2014), variational (e.g., Fierro et al. 2016, 2019; Zhang

et al. 2017) and ensemble-based approaches (e.g.,

Mansell 2014; Allen et al. 2016; H. Wang et al. 2018)

have been investigated to assimilate lightning. To the

best of our knowledge, there have not yet been any

studies evaluating more systematically the impact of

assimilating GLM-derived water vapor on short-term

forecasts of high-impact convective events in the vari-

ational framework at the cloud-scale (;1.5 km) with

high-frequency cycling (#15min).

Toward the goal of investigating how to best use

GLM lightning measurements in a cycled variational

(3DVAR) framework, five cases that occurred over the

Great Plains of the United States in May 2018 were

examined. The 3DVAR DA system that was initially

developed at the Center for Analysis and Prediction of

Storms (CAPS; Gao et al. 2004), and further updated at

the National Severe Storms Laboratory (NSSL) is

employed in this study (Gao and Stensrud 2012; Gao

et al. 2013). Fierro et al. (2019) adapted the previous

3DVAR method for lightning (ground-based net-

work) to use GLM data. The current study builds

upon Fierro et al.’s (2019) proof-of-concept adapta-

tion by performing a detailed sensitivity analysis of

the impact of assimilating GLM-derived water vapor

mixing ratio on short-term forecasts of storm-scale

weather events by varying (i) the length of the accu-

mulation interval of the GLM data prior to the DA,

(ii) the frequency of DA cycling, and (iii) the scale of

horizontal decorrelation. In light of the significant

improvements in short-term forecasts benefiting from

the assimilation of radar data (reflectivity factor and

radial wind), GLM DA experiments are further eval-

uated against radar DA experiments.

2. Brief description of GLM-observed
lightning data

As mentioned in the introduction, the GLM instru-

ment mounted on board the GOES-16/17 satellites

provides a unique opportunity to monitor total lightning

over the Western Hemisphere with nearly uniform

spatiotemporal resolution. The GLM detects optical

pulses emitted by lightning discharges night and day,
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without being able to differentiate between flash type

and polarity. The GLM is expected to detect ;90% of

all flashes during the night and ;70% during the day

with a daily average exceeding 70% (Goodman et al.

2013). The spatial resolution of the individual pixels

varies between 8 and 12km over the contiguous Unites

States. Data processing provides a hierarchy of geo-

located and time-stamped lightning data products (level

2 lightning data products), which include the events,

groups, and flashes (Goodman et al. 2013; Rudlosky

et al. 2019). At each pixel, the GLM tracks the aver-

age background energy. During each 2-ms sampling

frame, an event is defined if a single pixel exceeds the

background threshold. The GLM lightning cluster-

filter algorithm (LCFA) then assembles one or more

simultaneous GLM events in adjacent pixels into

groups, and finally combines one or more sequential

groups separated by less than 330ms and 16.5 km into

flashes (Mach et al. 2007). Similar to Fierro et al.

(2019), only the GLM flash product is used in this

study. The level 2 GLM data products also contain a

built-in adjustment for parallax due to the viewing

angle of cloud tops from the satellite. That correction is

based on satellite position, latitude and longitude of

each pixel, and an assumed cloud-top height, which is

dependent on latitude. The parallax errors over the

Great Plains of the United States is estimated to be on

the order of 10 km or less (Fierro et al. 2018a) and, thus,

is expected to have negligible impacts on shorter-term,

storm-scale forecasts.

3. Methodology/model and data assimilation
configuration

a. Forecast model

This work employs version 3.7.1 of the nonhydrostatic

Weather Research and Forecasting (WRF) Model

with the Advanced Research WRF dynamic core

(WRF-ARW; Skamarock et al. 2008). The selected

physical parameterizations are the NSSL two-moment

4-ice category bulk microphysics scheme (Ziegler 1985;

Mansell et al. 2010; Mansell and Ziegler 2013), the

Dudhia shortwave (SW) radiation scheme (Dudhia

1989), the Rapid Radiative Transfer Model (RRTM)

longwave (LW) radiation scheme (Mlawer et al. 1997),

the Yonsei University (YSU) planetary boundary layer

(PBL) scheme (Hong et al. 2006), and the Rapid

Update Cycle (RUC) land surface scheme (Benjamin

et al. 2004). TheDA experiments are performed on one

single domain with a uniform horizontal grid spacing of

1.5 km and horizontal dimensions of 500 3 500 grid

points (i.e., 750 km 3 750 km). There are 51 vertical

levels with a top set at 50-hPa corresponding to an

altitude of about 20–22 km. The computational time

step for the integration is 6 s.

b. Data assimilation procedures

1) 3DVAR SYSTEM

This study employs the NSSL 3DVAR system (Gao

et al. 2013; Gao and Stensrud 2014), which is an up-

grade from the Advanced Regional Prediction System

(ARPS) 3DVAR code (Gao et al. 2004; Hu et al.

2006a,b). This earlier version was only able to assimi-

late surface and radar radial velocity observations and

update the following six state variables: the pressure p,

potential temperature u, water vapor mixing ratio qy,

horizontal wind components u and y, and vertical wind

component w. The adjustments of water vapor and

hydrometer variables were originally performed by

means of a complex cloud analysis scheme (Hu et al.

2006a), appearing to be too aggressive due to the in-

troduction of relatively large amount of ice and water

mass into the model domain (Schenkman et al. 2011;

Fierro et al. 2014; Gao et al. 2016). To mitigate this

drawback, NSSL 3DVAR was upgraded to include the

capability of assimilating radar reflectivity factor (Gao

and Stensrud 2012) to adjust the mass mixing ratios for

rainwater (qr), snow (qs), and hail (qh) in the same

variational framework in which radar radial velocity

data and other traditional datasets are assimilated. The

reflectivity forward operator uses classification of hy-

drometer types so that updates are physically consis-

tent by preventing, for example, snow mass from being

introduced at temperatures below the freezing level.

Another feature of NSSL 3DVAR not used in this

study is the incorporation of ensemble-estimated co-

variance in a variational approach (Gao and Stensrud

2014; Gao et al. 2016). In addition, NSSL 3DVAR

includes a direct interface for WRF-ARW (Zhuang

et al. 2016; Y. Wang et al. 2018).

The data assimilated in this study include WSR-88D

level II radar data and pseudo water vapor mixing ratio

observations derived from GLM-observed total light-

ning data, both of which are described in more detail in

the subsections below.

2) RADAR

This work utilizes WSR-88D level II data (i.e.,

reflectivity factor and radial velocity) from multiple

radars covering the forecast domain. Prior to the DA,

necessary quality control (QC) procedures including

radial velocity dealiasing and removal of weak radar

returns or nonmeteorological scatters are performed

on each radar. For thinning purpose, QC-ed radar

data frommultiple sites are then interpolated onto the
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WRF model grid. If there are multiple radars over-

lapping at a given grid point, the largest radar reflec-

tivity value is chosen. The QC and processing of radar

data follow the same procedures as in Gao et al. (2013)

and Fierro et al. (2016, 2019). Additionally, the radar-

derived velocity–azimuth display (VAD) wind obser-

vations are assimilated into NSSL 3DVAR to adjust

the wind components of the storm environment.

3) GLM TOTAL LIGHTNING

To provide guidance for utilizing GLM lightning

observations in real-time DA applications, lightning

observations first are accumulated up to the analysis

time within a fixed time window. That is, for a given

window size Dt and analysis time t, the GLM total flash

data (from 20-s operational packets) accumulated

between t 2 Dt and t are used in the assimilation. It is

worth underlining that this approach differs from

previous works where, instead, observations falling

within a time window centered at the analysis time t

(i.e., observations from t 2 Dt/2 to t 1 Dt/2) are as-

similated. In other words, this implementation of

the GLM DA does not consider future observations

(relative to the analysis time, i.e., smoothing); which

topic will be deferred to future research. One chief

task of this study is to determine an optimal Dt for the
GLM data, which were varied from 10 to 60min in the

present study. The lightning data assimilation (LDA)

procedure follows, overall, a similar philosophy as

Fierro et al. (2019) wherein the model background

qy values are adjusted around the locations where

lightning occurs, regardless of flash rate. In other

words, the creation of pseudo-qy observations is per-

formed on a binary basis and is, thus, only contingent

on whether or not a flash is observed at a given

grid point.

Figure 1 illustrates a difference of strategy adopted in

this work with respect to Fierro et al. (2019) to inter-

polate the observed GLM data onto the model grid.

Each GLM flash has a latitude–longitude coordinate

denoting its pixel centroid with an average 8–12kmpixel

footprint resolution (Goodman et al. 2013). To ac-

count for this coarser resolution relative to the typical

convection-allowing grid spacing used (dx # 3 km),

Fierro et al. (2019) assumed that, given a GLM flash

centroid, all the grid cells contained within an assumed,

fixed (e.g.,;93 9 km2) area around the centroid on the

model grid (blue region in Fig. 1) were assigned the same

lightning rate values as the centroid observations. In this

study, however, only the (1.5 3 1.5 km2) grid cell con-

taining the flash centroid (referred to as lightning col-

umn) is assigned the actual observed flash rate (i.e., the

cell at the center of the grid in Fig. 1). The reduction of

the lightning footprint on the model grid is motivated

by the systematic trade-off seen between shorter-term

forecast improvements and increases in wet biases in the

forecast when precipitation- ormoisture-related variables

are adjusted (increased) during the assimilation (Fierro

et al. 2015, 2016). The decorrelation length from the

3DVAR is then used to determine a distance-weighted

factor such that grid points located farther away from the

centroid bear lower weight (i.e., smaller effect) reminis-

cent of the Gaspari and Cohn (1999) correlation function

with compact support used in EnKF methods. At each

lightning column, a pseudo qy field is created wherein the

background qy within a fixed layer (here 3km) above the

lifted condensation level (LCL) is adjusted to near satu-

ration (set RH to 95%, unless the background RH al-

ready exceeds 95%). Different layer depths above the

LCL ranging from 2 to 10km were evaluated and yielded

overall similar results, consistent with Fierro et al. (2016).

TheGLMpseudo-qy observations are produced using the

saturation water vapor mixing ratio qysat and the adjusted

background RH of 95% through qy 5 qysat 3 RH and

then assimilated into the 3DVAR system. Different sat-

uration RH values ranging from 80% to 95%were tested

and yielded overall qualitatively very similar results.

Similar to Fierro et al. (2016, 2019), the background

and observation error for qy is set to 1 3 1022 and

3 3 1023kgkg21, respectively, with a smaller observation

error aiming to imposemoreweight onobservations during

the 3DVARminimization. These values were obtained by

trial and error in a manner that would ensure comparable

FIG. 1. Schematic illustration of the spreading strategy for GLM

total lightning data used in Fierro et al. (2019) vs the one used in

this study. In this example, the horizontal dimension of individual

grid cell is of 1.5 km. A red ‘‘3’’ symbol indicates the centroid of

GLM flash observation, which does not necessarily coincide with

the geometrical center of the grid cell in the model.
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weights assigned to lightning observations with respect to

other storm-scale dataset (in this case radar data) that are

used for the real-time Spring Forecast Experiment (SFE).

As indicated by Xie et al. (2011) and Li et al. (2010), a

multipass recursive filter (from larger to finer length

scales) yields generally superior forecast performance

over single-pass 3DVAR methods. This study adopts a

two-pass recursive filter, each with a prescribed, fixed

horizontal decorrelation length scale (labeled L1 and

L2, respectively) and vertical decorrelation length scale.

GLM lightning data are only used in the second pass. As

in Fierro et al. (2019), L1 5 24km was chosen for the

first pass. Different values of L2 for the second pass were

tested for the GLM-based LDA as will be discussed in

sections 4 and 5. The vertical decorrelation lengths

adopted in this study are 4 grid points in the first pass and

2 grid points in the second pass.

4. Experimental design

To perform a more systematic evaluation of the im-

pact of assimilating GLM lightning-derived water vapor

on short-term forecasts, five high-impact weather events

from the 2018 SFE hosted by the NOAA Hazardous

Weather Testbed (HWT) are examined, namely, 1, 14,

19, 28, and 29 May. The NSSL Experimental Warn-on-

Forecast System (WoFS) developed by the Warn-on-

Forecast (WoF) project has been run in real time for

SFE since 2016. The study domain is selected on a daily

basis based on the ‘‘day 1’’ convective outlook product

from the Storm Prediction Center (SPC). The same

simulation domains as those from WoFS real-time SFE

runs are utilized in this study and presented in Fig. 2 with

the locations of radar sites used overlaid for all five cases.

The flowchart of the cycled DA and forecast system

is illustrated in Fig. 3. For each case, the model is cold

started at 1800 UTC and the 3DVAR is cycled at

15-min (or 60-min) intervals until 0300 UTC the fol-

lowing day. Starting from 1900 to 0300 UTC, a 3-h

forecast is launched every hour. The initial and lateral

boundary conditions are derived from the 3-km High-

Resolution Rapid Refresh (HRRR) forecasts initial-

ized at 1800 UTC and downscaled onto the 1.5-km

simulation domain (Fig. 2). To better gauge the

FIG. 2. Simulation domains (blue

square) and locations of the radar sites

for (a) 1 May, (b) 14 May, (c) 19 May,

(d) 28 May, and (e) 29 May 2018. The

detection range (150 km) of each radar

is denoted by a blue circle.
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respective impacts of the radar and/or GLM DA, a

control experiment (denoted as CTRL) is conducted

first by advancing the model forward without assimi-

lating any observations.

The observed composite reflectivity fields (CREF)

from NSSL’s Multi-Radar Multi-Sensor (MRMS) prod-

uct (Smith et al. 2016) and the Stage IV hourly rainfall

estimates from the National Centers for Environmental

Prediction (Baldwin and Mitchell 1997) were used to

evaluate the simulations. To facilitate the comparison

between observations and model simulations, all the ob-

servations were interpolated onto the 1.5-km model

grid (Fig. 2).

Contingency elements including the probability of

detection (POD), the false alarm rate (FAR), and crit-

ical success index (CSI) along with the frequency bias

and neighborhood-based approach such as the equitable

threat scores (ETS; Clark et al. 2010) and the fractions

skill scores (FSS; Roberts and Lean 2008) were used to

quantitatively evaluate the DA impact on the analysis

and short-term forecasts for each experiment individu-

ally, and in the aggregate.

To determine more optimal settings for assimilating

GLM lightning-derived water vapor mixing ratio in

convective-scale NWP models, this study first per-

formed several sensitivity tests related to the DA

configuration. Focus was directed on the horizontal

decorrelation length scale L2 [ranging from 3 to 12 km

to limit the overspreading of qy described in Fierro

et al. (2016, 2018b)], the frequency of 3DVAR cycling

(15–60min) and the length of the time window Dt for
accumulating GLM lightning data up to the analysis

time t (10–60min). Additional sensitivity tests using

GLM accumulation periods centered at time t were

conducted and showed overall similar analysis/forecast

performance. The main objective is to explore the po-

tential usage of GLM-derived water mixing ratio in a

3DVAR data assimilation system for real-time fore-

casts of high-impact weather events. Therefore, at each

analysis time, it is reasonable to assimilate observations

that have been collected up to the current analysis time

to minimize latency. The design of the sensitivity test

experiments and associated nomenclature are listed in

Table 1. For example, the experiment denoted as

‘‘GLM_15min_10win_12km’’ assimilates water vapor

mixing ratio derived from 10-min accumulated GLM

total lightning data every 15min using L25 12 km. The

flow diagrams for the 15- and 60-min 3DVAR cycling

experiments are shown in Figs. 3a and 3b, respectively.

In addition to the three aforementioned DA parame-

ters, these sensitivity tests evaluated how the GLMDA

strategy herein (Fig. 1) performed against the original

method from Fierro et al. (2019).

Based on aggregate forecast evaluation metrics for all

five cases, the GLM experiment in Table 1 yielding

the best results will be selected for evaluation against

FIG. 3. Illustration of data assimilation and forecast cycle workflow for two scenarios:

(a) observations being assimilated every 15min and (b) 60min. In both (a) and (b), a 3-h

forecast is launched every hour from 1900 to 0300 UTC (viz., eight separate forecasts).
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(i) CTRL, (ii) a DA experiment only assimilatingWSR-

88D radar data (RAD), and (iii) a DA experiment as-

similating GLM total lightning data in conjunction with

WSR-88D radar data (referred to as GLM 1 RAD).

5. Results and discussion

a. Sensitivity tests for the GLM-based DA
experiments

Prior to describing the impact of the GLMDA on the

analysis and short-term forecast, it is useful to first

provide a brief quantitative depiction of the qy adjust-

ments made by the 3DVAR. For the sake of brevity, the

1 May 2018 case is used for illustration.

On 1May 2018, environmental conditions favored the

development of severe thunderstorms across Kansas

and southeastern portions of Nebraska. Between 1930

and 2000 UTC, the first convective cells initiated along a

front across western Kansas and southeastern Nebraska.

In the following hours, more storms formed along the

front to eventually merge into a quasi-linear mesoscale

convective system (QLCS) as they moved northeast-

ward. Based on National Weather Service (NWS) local

storm reports, this QLCS produced several large hail

(up to baseball size) and tornado events. Between 2300

and 0200 UTC 2 May alone, a total of 13 tornadoes and

several large hail events were reported in Kansas,

Nebraska, and Oklahoma.

The flash origin density rate data (i.e., the number of

flashes in each grid cell) derived from the accumulated

GLM flash centroid observations at 2300 UTC in each

experiment (Table 1) for the 1 May 2018 case are given

in Fig. 4. Comparing Figs. 4a and 4b, it becomes clearer

that the ‘‘spreading’’ strategy used in Fierro et al. (2019)

leads to a larger areal coverage of nonzero flash den-

sity rates, indicating that the qy adjustments from the

3DVAR will be performed on a larger number of grid

columns (or grid volume). Because the probability of

a given GLM flash centroid to fall within an individ-

ual 9 3 9 km2 box will be larger than within a finer

1.5 3 1.5 km2 box, the spreading method of Fierro

et al.(2019) will also lead to higher flash density rates

on the model grid (Figs. 4a,b). Although the current

study imposes qy adjustments regardless of lightning

rates, Fig. 4 illustrates that consideration must be

taken if the qy adjustments are assumed to depend on

flash density as in Fierro et al. (2016). Figures 4c–e

highlight and contrast for this case how the number of

nonzero lightning cells decreases as the accumulation

interval for the lightning decreases (smaller rates).

To assess how the GLM DA impacts the qy fields for

each of the sensitivity experiments listed in Table 1, the

3–7 km (MSL) layer-averaged qy fields of the analysis

are examined for 1 May 2018. Note that due to the cy-

cling, each experiment will evolve a different back-

ground over time. Therefore, in this study, the qy
differences relative to CTRL instead of the qy increments

(analysis background) are analyzed at 2300 UTC (Fig. 5).

It is worth noting that because 2300 UTC is not the first

3DVARcycle (Fig. 3a), the qy differences can be negative

owing to successivemodel adjustments to the background

fields from the prior 3DVAR cycles. Rationale for se-

lecting 2300 UTC was because this time produced a

copious amount of lightning, better highlighting the

differences and sensitivities between the experiments.

As expected, the largest positive qy differences are

collocated with areas of nonzero flash density (Fig. 4).

As L2 decreases, the qy differences are imposed on

progressively smaller areas (Figs. 5a–c). For a given

value of L2 (here at 3 km), Figs. 5b and 5d highlight how

the spreading strategy of Fierro et al. (2019) yields ap-

proximately comparable qy differences as those pro-

duced by the nonspreading strategy herein using a larger

decorrelation length (L2 5 6 km, Fig. 5b). Comparison

of Fig. 5e against Fig. 5c reveals that 15-min DA (five

cycles) produces noticeably larger qy differences than

60-min DA (1 cycle). This is because, over a 1-h pe-

riod, DA experiment GLM_15min_10win_3km accu-

mulates the impact (qy adjustments) of five individual

3DVAR cycles, compared to only one 3DVAR cycle

TABLE 1. Key parameters used for theGLM-basedDA sensitivity experiments. From left to right, the column lists the nomenclature for

each experiment, the 3DVAR cycling frequency, the accumulation interval used for the GLM data prior to the DA and the horizontal

decorrelation length scale used in the second 3DVAR pass ‘‘L2’’ (recalling that the GLMDA is not activated in the first pass). The suffix

‘‘Spread’’ refers to the original LDA method from Fierro et al. (2019) illustrated in Fig. 1.

Experiment DA cycle (min) Time window Dt (min) Horizontal decorrelation length L2 (km)

GLM_15min_10win_12km 15 10 12

GLM_15min_10win_6km 15 10 6

GLM_15min_10win_3km 15 10 3

GLM_15min_10win_3km_Spread 15 10 3

GLM_60min_60win_3km 60 60 3

GLM_60min_30win_3km 60 30 3

GLM_60min_15win_3km 60 15 3
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in GLM_60min_60win_3km. The 60-min DA experi-

ments show that a slightly larger areal coverage of

positive qy differences will ensue if a longer accumu-

lation interval is used (Figs. 5e–g).

The analyzed CREF fields at 2300 UTC are shown

in Fig. 6 for each of the GLM-based experiments in

Table 1 together with CTRL and the MRMS obser-

vations. To better differentiate and analyze the com-

parisons, the QLCS is divided into four main regions,

labeled A to D from south to north (Fig. 6a). CTRL

fails to simulate the tornadic storm in region A

(Figs. 6a,b) while all 15-min cycling DA experiments

successfully captured it (Figs. 6c–f). Highlighting the

benefit of using more frequent 3DVAR cycles, Figs. 6g–i

reveal that all 60-min cycling DA experiments fail to

analyze the storm despite the positive qy adjustments

incurred there (Figs. 5e–g). The observed storms in

region B produced several tornadoes and large hail

events. CTRL misses some of the cells in this region

and the intensity is overall weaker than observed

(Fig. 6b).Although, both 15- and 60-minDAexperiments

improved the forecast of these isolated cells, the fore-

casted CREF values are notably larger than observed.

The advantage of using higher-frequency 15-min cycling

over 60min is illustrated in Figs. 6c–i: none of the 60-min

cycling experiments forecasts the individual storms well

enough (Figs. 6g–i), while, in contrast, the 15-min DA

experiments are able to produce storm cells that are

more isolated in nature and, in turn, more concordant

with the observations despite a slight northward bias

(Fig. 6a). In region C, all simulations appear to repro-

duce the largely stratiform, weaker convection there,

with the GLM-based DA experiments generally over-

estimating reflectivity values. In region D, all 15-min

DA experiments exhibit reasonable storm coverage

with generally larger-than-observed reflectivity values

(Figs. 6c–f). In contrast, the 60-min DA experiments

produce slightly smaller storm coverage but with re-

flectivity values generally more aligned with the obser-

vations (Figs. 6g–i). Generally, all GLM-based DA

experiments show noteworthy improvements over CTRL

with the 15-min DA experiments producing the best

FIG. 4. Horizontal cross

sections illustrating theGLM-

derived flash density rate

data in GLM-based DA

experiments listed in Table 1.

In this example the flash

density data for the2300UTC

3DVAR cycle on 1 May

2018 are shown.
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results, in terms of intensity, structure, location, and areal

coverage. In line with the qy differences highlighted in

Fig. 5, the usage of a larger decorrelation length scale

yields larger values and areal coverage of simulated

reflectivity (Figs. 6c–e). Although the difference is argu-

ably small, storm coverage generally decreases as the

lightning accumulation interval decreases (Figs. 6g–i).

Consistent with earlier findings, the spreading strategy

FIG. 5. Horizontal cross sections at 2300 UTC 1 May 2018

(analysis time) of differences of the 3–7 km layer averaged qy
between each GLMDA experiments listed in Table 1 and CTRL.

MARCH 2020 HU ET AL . 1013

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/148/3/1005/4923112/m
w

rd190198.pdf by N
O

AA C
entral Library user on 11 August 2020



from Fierro et al. (2019) is effectively equivalent to in-

creasing the decorrelation length scale (Figs. 6d,f).

To analyze the overall performance of each GLMDA

experiment, aggregate forecast metrics for composite

reflectivity fields and accumulated rainfall were com-

puted for 19 separate 3-h forecasts across all five cases

(viz. 2100–0000 UTC 1 May 2018, 1900–2100 UTC

19 May 2018, and 0000–0300 UTC 14, 28, and 29 May

2018). These metrics are: POD, CSI, FAR, success ratio

(SR5 12 FAR), the frequency bias (referred to as bias)

and the neighborhood-based ETS. The FSS values were

also computed showing, overall, very similar results to

the ETS (not shown). The neighborhood radius shown

for the ETS is 12 km (8 grid points). To provide a more

concise and clearer depiction of forecast performance,

this work makes use of the categorical performance

diagram described in Roebber (2009), which conve-

niently merge bias, POD, FAR (through SR), and CSI

FIG. 6. Horizontal cross sections of composite reflectivity fields at 2300 UTC 1 May 2018 (analysis time) for (a) MRMS observations

interpolated onto the 1.5 km simulation domain, (b) CTRL, and (c)–(i) the GLM DA experiments in Table 1.
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information into one graph. Forecast skill increases as

the POD, SR, bias, and CSI all approach unity, mean-

ing that a perfect forecast lies on the upper-right corner

of the diagram.

The improvements from the GLM-based DA exper-

iments relative to CTRL become more evident when

visualized in this diagram (Figs. 7a,b). Consistent with

Fierro et al. (2016), the 15-minDA experiments indicate

that when the decorrelation length scale L2 increases, so

does the bias along with progressively larger POD and

smaller SR and CSI. The 60-min DA experiments pro-

duce smaller CSI values than their 15-min counterparts.

The nearly identical placement of the dots on the dia-

gram for both GLM_15min_10win_3km_SPREAD and

GLM_15min_10win_6km (Table 1), confirms that the

spreading strategy used in Fierro et al. (2019) is effec-

tively equivalent to increasing the decorrelation length

scale in the nonspreading strategy. When increasing

the CREF threshold from 30dBZ (Fig. 7a) to 40dBZ

(Fig. 7b), the POD, SR, and CSI values decrease

in all experiments. Overall, the experiment labeled

GLM_15min_10win_3km produces the best forecast as

evidenced by higher POD and CSI values together

with a lower bias. Generally speaking, when inspecting

the respective aggregate ETS aggregated over 19 fore-

casts, it also becomes clear that all GLM-based DA

experiments outperform CTRL, and that the 15-min

cycling experiments produce overall larger scores than

with 60-min cycling (Figs. 7c,d). Metrics for hourly

precipitation using thresholds of 2.5, 5, and 10mm rel-

ative to the Stage IV estimates have similar forecast

behavior and performance, though the relative differ-

ences in scores between the experiments are more pro-

nounced than for CREF (Figs. 8a–f). For precipitation,

it is also worth noting that between 1 and 3h forecast,

(i) the biases exhibit a larger relative increase than for

CREF, and (ii) the SRs at 3 h forecasts are generally

smaller than for CREF (owing to larger FAR). This

FIG. 7. Aggregate score metrics of composite reflectivity fields relative to MRMS observations for 19 three-hour forecasts over all five

cases for each of the experiments listed in Table 1. (a),(b) Performance diagram and (c),(d) equitable threat score (ETS) for (a),(c) 30 dBZ

and (b),(d) 40 dBZ thresholds, respectively. Results are shown for a neighborhood radius of 12 km. The numbers within the colored dots

denote the forecast hour (i.e., 1- and 3-h forecasts).
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suggests a larger sensitivity of precipitation predictions

to some of the factors contributing to forecast errors

such as spurious convection, bias in the microphysics

(Fierro et al. 2015) and/or phase errors.

The aggregate performance diagrams and ETS time

series for rainfall and CREF all indicate that the

GLM_15min_10win_3km experiment—referred to as

‘‘GLM’’ in the remainder of the manuscript—generally

produces the best forecast.

b. Overall evaluation

To better gauge the impact and added value of the as-

similationofGLMdataon short-term, cloud-scale forecasts,

theGLMDAexperiment (i.e.,GLM_15min_10win_3km)

will be evaluated against simulations assimilating

(level II) radar data (RAD) and assimilating both

GLM and radar data (GLM 1 RAD). To maintain

consistency with the original (most optimal) GLM

experiment, both radar DA experiments (i.e., RAD

and GLM 1 RAD) make use of 15-min cycling fre-

quency as well (Fig. 3a). In the following sections,

the results from two case studies representative of

the best and worst forecast according to the perfor-

mance diagram and ETS/FSS values will be first

discussed followed by an analysis of the aggregate

forecast statistics over all five cases.

1) BEST FORECAST SCENARIO: 1 MAY 2018 CASE

Although CTRL is able to produce some of the ob-

served storms at 1-h forecast (Figs. 9a,b), all three DA

FIG. 8. As in Fig. 7, but for hourly accumulated precipitation relative to Stage IV multisensor rainfall estimates calculated using the

following thresholds: (a),(d) 2.5, (b),(e) 5, and (c),(f) 10mm.
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experiments GLM, RAD, and GLM 1 RAD improve

the forecast further, as evidenced by the two storms just

north of the Oklahoma border and one cell on the bor-

der between Kansas and Nebraska. Among the three

DA experiments, only GLM is able to produce the two

isolated supercellular storms just north of theOklahoma

border (Fig. 9c). Additionally, all DA experiments

capture the QLCS structure better than CTRL. Both

experiments assimilating radar data, that is, RAD and

GLM1RAD, tend to produce amore linear convective

mode than in the observations. It is relevant to note,

however, that GLM also produces a more linear con-

vective mode but in southeast Nebraska and western

Iowa (Figs. 9a,c,d,e).

Generally speaking, all DA experiments improve

the areal coverage of 3-h APCP , 40mm further

(Fig. 10). For amounts exceeding 50mm,GLMproduces

a fairly reasonable areal coverage and amount predic-

tion. However, all experiments appear to overpredict

the areal coverage as well as the precipitation amount,

which is most evident for the cluster of storms that

crossed from Nebraska into Iowa (Figs. 10c–e).

To provide a more thorough assessment of the impact

of the GLM DA, the 2–5km updraft helicity (UH)

tracks computed from 15-minmodel output are depicted

in Fig. 11 and were overlaid with the NWS local storm

reports. Although CTRL predicts the storm tracks as-

sociated with most tornadoes and hail events, it fails in

predicting the two strong tracks in south-central Kansas

and one additional track to the north of it (Fig. 11a).

GLM predicts most of the tracks and their locations

aligned generally well with the NWS local storm reports.

The GLM storm tracks, however, exhibit a north-

ward displacement bias for storms near the border of

Nebraska and Kansas and a weaker intensity for one of

the storms that produced two hail events in south-

central Kansas (Fig. 11b). The tracks for all storms

associated with NWS local storm reports are well

forecasted by RAD, with the exception of weaker

tracks in north-central Kansas associated with torna-

does and hail reports (Fig. 11c). When assimilating

both GLM and radar data, the rotation tracks become

more consistent with the NWS local storm reports

(Fig. 11d). A similar analysis was conducted for

FIG. 9. Horizontal cross

sections of composite re-

flectivity fields at 0000 UTC

2 May 2018 (1-h forecast)

for (a) MRMS observa-

tions interpolated onto the

1.5 km simulation domain,

(b) CTRL, (c) GLM (i.e.,

GLM_15min_10win_3km),

(d) RAD, and (e) GLM 1
RAD experiments.
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301dBZ CREF tracks and revealed overall very sim-

ilar qualitative behaviors (not shown).

2) WORST FORECAST SCENARIO: 14 MAY

2018 CASE

On 14 May 2018, severe thunderstorms developed

along and ahead of a quasi-stationary front moving

through the central Great Plains. Four tornadoes were

reported in Kansas—three of them in Cowley County

and the fourth one in Chautauqua County (Fig. 12a).

Hail up to baseball size (7.0 cm) was reported in western

Kansas (near Scott city) and as large as ping pong balls

(3.8 cm) in southeast Kansas. These severe thunderstorms

also produced flooding rains over Chanute in Neosho

County setting a 24-h rainfall record of 2.96 in., and Iola in

Allen County of 2.34 in. Additionally, several thunder-

storms initiated along a dryline in northwest Texas and

the Oklahoma panhandle, and moved northeastward

producing several large hail and strongwind reports there.

For the analysis of the CREF forecast, the study do-

main is, as before, divided into four key regions, labeled

from A to D (Fig. 12a). For brevity of illustration, this

analysis focuses on 1-h forecasts initialized at 0200 UTC

15 May 2018. In A, all DA experiments reasonably

predict most of the storms, with GLM generally pro-

ducing the best results (Fig. 12c). RAD and GLM 1
RAD systematically displace the storms southward and

with larger-than-observed CREF (Figs. 12d,e). All DA

experiments reasonably reproduce most of the storms in

B in terms of location and intensity (Figs. 12c–e). The

CTRL run generates fewer storms and generally suffers

from a notable southward bias (Fig. 12b), while GLM1
RAD produce the largest overestimate for their areal

coverage. For the storms in C, GLM generally over-

predicts their intensity (Fig. 12c) while RAD does not

distinctly improve over CTRL in this area (Fig. 12d). In

region C, however, radar data are helpful in suppressing

some of the spurious radar echoes over Missouri when

combined with GLM lightning data (GLM 1 RAD,

Fig. 12e). In regionD, all the experiments underestimate

CREF and fail to simulate the twomain storm cells there.

When examining the 3-h precipitation forecasts,

CTRL produces a distinctive southward bias in the

APCP maximum observed in southeastern Kansas

FIG. 10. As in Fig. 9,

but for the 3-h accu-

mulated precipitation

fields (APCP) with the

observations in (a) de-

rived from the Stage

IV multisensor rainfall

estimates.

1018 MONTHLY WEATHER REV IEW VOLUME 148

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/148/3/1005/4923112/m
w

rd190198.pdf by N
O

AA C
entral Library user on 11 August 2020



(Figs. 13a,b). While GLM, RAD, and GLM 1 RAD

alleviate this displacement error somewhat (Figs.

13c–e), GLM overestimates the rainfall amounts there

(Figs. 13a,c), with GLM 1 RAD exacerbating rainfall

overprediction further in eastern Kansas (Fig. 13e).

Consistent with the CREF forecasts, RAD and GLM1
RAD both overpredict precipitation amounts in south-

western Oklahoma (Figs. 13d,e).

The CREF tracks throughout the 3-h forecast and

UH tracks (not shown) exhibit overall similar behavior

to the rainfall and CREF forecasts. In contrast to the

southwest bias in CTRL, all DA experiments predict

the CREF tracks in southern Kansas and northern

Oklahoma reasonably well, demonstrating their supe-

riority relative to CTRL. In this region, the CREF

tracks fromRADare themost consistent with the NWS

local storm reports, while both RAD and GLM1RAD

generally overestimate their areal coverage there,

agreeing well with CREF and rainfall forecasts in

Figs. 12 and 13. As discussed before, CTRL as well as

FIG. 11. 2–5 km updraft helicity tracks for 0–3 h forecast beginning at 2300 UTC 1 May 2018 for (a) CTRL, (b) GLM, (c) RAD, and

(d) GLM 1 RAD experiments. The red triangles, green squares, and blue triangles represent the observed tornadoes, hail, and severe

wind events, respectively.
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all DA experiments fail to predict the storms in

western of Kansas and, consequently, the hail storm

tracks over that region.

3) AGGREGATE PERFORMANCE

Similar to the GLM sensitivity experiments discussed

earlier, aggregate forecast statistics for 19 separate 3-h

forecasts from all five cases were computed to provide a

more comprehensive view of the performance of GLM,

RAD, andGLM1RAD.The aggregatemetrics include

POD, CSI, SR, bias, and ETS (radius of 12 km). These

were calculated, as before, for CREF and 1-h accumu-

lated precipitation with thresholds of 30 and 40dBZ and

2.5, 5, and 10mm, respectively. These statistics were also

computed for the FSS and revealed overall similar be-

havior to the ETS (not shown).

In terms of CREF, all DA experiments outperform

CTRL and produce biases ranging between 0.7 and 1.4

(Fig. 14). GLM produces the highest POD but largest

bias, RADhas the smallest PODbut smallest bias, while

GLM 1 RAD lies in between (Figs. 14a,b). GLM 1
RAD exhibits slightly higher ETS than RAD for 0–1 h

CREF forecast at the cost of addingmore bias due to the

overprediction and spurious cells (Figs. 14c,d). For the

30-dBZ threshold, the improvement of ETS and CSI by

GLM1 RAD over RAD persists until the 3-h forecast.

At 40 dBZ, however, RAD produces higher ETS and

CSI for the 1.5–3 h forecast. GLM has lower ETS for the

first 1.5 h of forecast but then surpasses GLM 1 RAD.

The difference betweenRAD andGLM is more notable

during the first half hour, where RAD produces much

higher ETS than GLM. After that, GLM outperforms

RAD in terms of ETS, POD, and CSI forecast at 30 dBZ

but produced similar ETS scores at 40 dBZ. The ETSs

for all DA experiments undergo a sharp decrease with

time after 1 h forecast. Such a marked drop is especially

evident for RAD and GLM 1 RAD, a result that is

consistent with past cloud-scale lightning DA works

highlighting that longer-term solutions tend to pro-

gressively become bounded by bias and errors contained

in the large-scale environment (e.g., Fierro et al. 2015).

The hourly rainfall forecasts (Fig. 15) exhibit broadly

consistent results with those from CREF. The 1-h fore-

casts from GLM 1 RAD and RAD are relatively

FIG. 12. As in Fig. 9,

but for the 1-h forecast

initialized at 0200 UTC

15 May 2018.
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similar, with higher PODandSR thanGLM(Figs. 15a–c).

At 3-h forecast, however, GLM produces the largest

POD (at the cost of producing the largest bias and lower

SR). RAD shows overall the largest value of SR and CSI

but smallest value of POD (Figs. 15a–c). Similar to

CREF, both RAD and GLM 1 RAD produce the best

ETS at 1h, whose values experience a marked drop af-

terward (Figs. 15d–f). At 2–3 h forecasts, the ETS for

GLM and GLM 1 RAD remain similar. For the 2-h

forecast, GLM produces the highest ETS at 2.5 and

5.0mmwhile RADproduces the best ETS at 10mm. For

all thresholds, RAD generally shows the largest ETS at

3-h forecasts although being small (e.g., ,0.4 at 10mm)

and not significantly different from CTRL (;0.25,

Fig. 15f).

Overall, the assimilation of GLM lightning data over

radar has a neutral to positive impact on the short-term

forecasts of convective-scale severe weather events. In

line with Fierro et al. (2019), the assimilation of GLM

lightning data alone is able to notably improve short-

term (1–2h) forecast skill over CTRL. The sharp,

gradual loss in model skill only a few hours (;3 h)

following the analysis time has also been reported in

prior cloud-scale 3DVARDA studies assimilating radar

(e.g., Schenkman et al. 2011; Gao et al. 2018) and/or

lightning data (Fierro et al. 2015, 2019). When simulta-

neously assimilating both GLM and radar data, forecast

skill is improved further relative to when either only

radar or only lightning data are assimilated, especially

for 0–1 h forecasts. Similar to previous DA studies

involving adjustments of moisture- or precipitation-

related proxy variables for lightning (or hydrometeors

through a cloud analysis), however, a higher POD is

generally accompanied by an increase in wet bias.

Fierro et al. (2015) indicated that in the context of

qy-based LDA, there generally was a systematic trade-

off between wet biases in the forecast and short-term

forecast improvements. Such wet biases earlier on in

the forecast can have profound detrimental impacts

on the longer-term solution through faster saturation

of errors at the smaller scales, and thus should be

addressed in future endeavors either by building on

the qy conservation concept proposed in Fierro et al.

(2019) or by exploring alternative means to confine

FIG. 13. As in Fig. 10,

but for the 3-h forecast

initialized at 0200 UTC,

15 May 2018.
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the impact of moisture adjustments inferred by lightning

or other types of observations near convective cores.

c. DA statistics

Following the line of work of Fierro et al. (2019), the

variation of total cost function together with DA sta-

tistics including the mean and root-mean-square (RMS)

of the innovation and analysis residual during DA cycles

are analyzed to provide an evaluation of the quality and

performance of the 3DVAR analyses. Because the re-

sults for each case were qualitatively similar, only one

case is presented for brevity, namely, 1 May 2018. The

cost function minimized iteratively by the 3DVAR al-

gorithm during each analysis is defined, for instance, by

Eq. (1) in Gao et al. (2013). For a converging analysis,

the cost function is anticipated to decrease with itera-

tions in each minimization step.

The innovation defines the difference between the

observation and the background, and the analysis re-

sidual measures the difference between the observation

and the analysis. The mean innovation (referred to as

MEANinnov) and MEAN analysis residual (referred to

FIG. 14. Aggregate scoremetrics of composite reflectivity fields relative toMRMSobservations for 19 three-hour

forecasts over all five cases for experiments GLM, RAD, and GLM1RAD. (a),(b) The performance diagram and

(c),(d) the equitable threat score (ETS) for (a),(c) 30 dBZ and (b),(d) 40 dBZ thresholds, respectively. Results are

shown for a neighborhood radius of 12-km. The numbers in the circle in (a) and (b) denote the forecast length (i.e.,

1- and 3-h forecasts).

1022 MONTHLY WEATHER REV IEW VOLUME 148

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/148/3/1005/4923112/m
w

rd190198.pdf by N
O

AA C
entral Library user on 11 August 2020



as MEANres) are calculated to estimate a measure of

bias between the observation and model. The RMS

statistics for the innovation (referred to as RMSinnov)

and analysis residual (referred to as RMSres) provide a

measure of the Euclidian distance between the obser-

vation and the background and between the observation

and the analysis, respectively. The reader is invited to

consult Fierro et al. (2019) for details behind their for-

mulations. Because statistics from both 3DVAR passes

have similar behavior, only those for the second pass are

discussed.

In general, the magnitude of the (normalized) total

cost function decreases with iterations, with GLM

producing the steepest drop (about 90%) during the

first few iterations (Fig. 16a). In RAD and GLM 1
RAD, significantly more radar observations are be-

ing assimilated (volumetric scans) and because of

the nonlinearity relationship between reflectivity and

hydrometer variables, the total cost function decreases

less rapidly (Figs. 16b,c). The lower values of RMSres
compared to corresponding values of RMSinnov for all

variables in each experiment indicate that the analysis

is closer to the observations than the background,

which confirms that the 3DVAR system generally in-

gests all the available observations reasonably well

(Figs. 16d–f). The slight decrease of RMSinnov for the

GLM-derived qy and radial velocity yr with DA cycles

in all experiments indicates particularly good assimi-

lation of GLM-derived qy observations and radar radial

velocity observations by the system. The nonlinearity

of the radar reflectivity operator (Gao et al. 2016)

coupled with phase errors and the development of

spurious convection all account for the gradual increases

seen for RMSinnov with cycling before 0000 UTC

(Figs. 16e,f).

Positive MEANinnov and MEANres values (close to

zero) for qy in (Figs. 16g,i) indicate that qy fields from

both the background and the analysis are smaller than

the GLM-derived pseudo observations for qy (which

assumes near saturation w.r.t. water). This indicates

that the 3DVAR analysis properly adjust the back-

ground qy toward saturation within lightning columns.

FIG. 15. As in Fig. 14, but for hourly accumulated precipitation relative to Stage IV multisensor rainfall estimates calculated using the

following thresholds: (a),(d) 2.5, (b),(e) 5, and (c),(f) 10mm.
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MEANinnov and MEANres values for yr are quite small

(Figs. 16h,i), indicating little overall bias. Both back-

ground and analysis have higher reflectivity values than

the radar observations, as revealed by the negative

MEANinnov and MEANres values for reflectivity in

both RAD-based experiments (Figs. 16h,i). This sys-

tematic overestimation of reflectivity by the 3DVAR

analysis accounts for the overprediction of rainfall as

seen, for instance, in Figs. 10d and 10e.

6. Summary and conclusions

This study evaluated the impact of assimilating

pseudo-qy observations derived from spaceborne GLM

FIG. 16. (a)–(c) Change of the normalized total cost function with iteration number for (a) GLM, (b) RAD, and (c) GLM 1 RAD

experiments during each cycle between 2200 and 2300UTC 1May 2018. The curve for each cycle is colored following the legends given in

(a). (d)–(f) Time series of root-mean-square (RMS) innovation (solid curve) and analysis residual (dashed curve) for reflectivity factor

(REFL in dBZ, red), radial velocity (Vr in m s21, blue), and water vapor mixing ratio (qy in g kg21, green) for (d) GLM, (e) RAD, and

(f) GLM 1 RAD experiments. (g)–(i) As in (d)–(f), but for the mean statistics.
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total lightning data into convective-scale NWP for short-

term severe weather forecasts. The NSSL 3DVAR sys-

tem was utilized to assimilate GLM lightning-derived

pseudo-qy observations by building on initial concepts

put forth in Fierro et al. (2016, 2019) wherein water

vapor mass mixing ratio is adjusted to near saturation

within a confined layer at and around observed lightning

locations.

To provide a more systematic assessment of the

performance of GLM lightning DA, five high-impact

weather events that occurred in May 2018 over the

Great Plains of the United States were examined. For

each of the five cases, the study domain was chosen

based on the SPC ‘‘day 1’’ convective outlook product.

To determine an optimal configuration for the GLM

DA, sensitivity tests were conducted first, which fo-

cused on evaluating the impact of the (i) horizontal

decorrelation length scale, (ii) 3DVAR cycling fre-

quency, and (iii) accumulation period for the GLM

data prior to each 3DVAR analysis. Qualitative and

quantitative assessments of composite reflectivity fields

and accumulated precipitation analysis/forecast against

observations using aggregate statistics revealed that as-

similating 10-min accumulated GLM lightning data ev-

ery 15min with a decorrelation length scale of 3 km for

qy yielded the best results.

With the above settings for the GLM DA, two com-

panion experiments assimilating level II radar data

(VAD-derived winds, radial velocity, and radar reflec-

tivity) with or without GLM total lightning-derived

pseudo-qy observations were conducted. Overall, im-

provements on short-term (0–3 h) forecasts in the ag-

gregate were revealed by all assimilation experiments

including either radar and/or GLM lightning data.

Similar to prior cloud-scale DA studies, forecast skill

was characterized by amarked drop after about 1 h. For

these five cases, the forecast skill for the experiment

assimilating only GLM lightning-derived qy data was

comparable to that of the radar-only DA experiment

(Fierro et al. 2016). Similar to previous cloud-scale

lightning DA studies, the short-term improvements in

precipitation forecasts were generally accompanied

by a noteworthy increase in wet bias, especially later in

the simulation ($3 h, e.g., Fierro et al. 2015). Overall,

higher 0–1 h forecast skill was obtained when radar

data were assimilated. The combination of GLM and

RAD helps improve POD and ETS forecast but at the

cost of exacerbating any existing wet biases (Fierro

et al. 2016).

One of the critical limitations of the present LDA

scheme lies in its inability to suppress spurious convection

even when combined with current radar DA approach.

Current parallel work is investigatingmodifications to the

radar DA scheme wherein radar reflectivity fields from

background and observed fields are used in concert to

identify areas of spurious convection where negative qy
increments should be imposed. Besides, available tra-

ditional observations such as pressure, temperature,

moisture, and wind observations from surface observ-

ing platforms such as mesonets, as well as upper-air

observing instruments such as radiosondes and wind

profiles, could also be effectively assimilated in future

work to help better represent the observed near-storm

environment. It is relevant to also point out that this

study only considered GLM flash centroids as an ef-

fort to primarily facilitate comparisons between pre-

vious studies that assimilated typical point-flash data

from ground-based sensors (e.g., Fierro et al. 2012;

Marchand and Fuelberg 2014; Fierro et al. 2019).

Further research will be devoted at leveraging the

GLM group and event locations, which better depict

the spatial extent of the GLM flashes and, hence, could

help better represent convective and stratiform areas in

the analysis (Peterson 2019). Auxiliary spaceborne

datasets such as the GOES-R Series Advanced Baseline

Imager (ABI) product should also be used in tandem

with the GLM to better depict the nature of clouds be-

yond electrically active regions.
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